W Toalsy

a

N
R
t:
N
g
N\

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

INTRODUCTION

Keep in mind as you read this lesson that the scripts you're seeing and modifying are "client-side" scripts —
scripts that are executed in the browser, at the client end of the web transaction. CHT servers don't require
“server-side” scripts the way generic servers like 1IS do. CHT Browser Server logic and data packaging are
determined as part of your server design using CHT templates and are done with Clarion code.

Client-side scripts are used by the client appliance — namely, the browser - to render the pages at run-time,
using the data provided by the server within the context of the logic designed into the server by the server
developer. The design of a server, like the design of any Clarion application, is fully under your control. The
server is not really involved in page-rendering at all. It only makes the page scripts, style sheets and data
packages available, as needed, to the visiting browser. Final assembly is done by the browser itself.

Once you internalize this important concept, you'll begin to realize that you could, with sufficient skill and
motivation, entirely re-design the HNDMTSNG.EXE server's presentation and even its intended end-use,
without making a single modification to the server’s Clarion source code - which you haven't been given
yet.

We did some brainstorming here at The Clarion Handy Tools Page and came up with nearly a dozen totally
different end-uses that this one server could be put to - other than acting as a Web Group server - without a
single modification to the server-side Clarion code. Those possibilities will become more obvious in this
lesson.

Perhaps during the course of reading and performing the tasks in this lesson, you'll have some bright ideas
of your own about how to apply HNDMTSNG.EXE to a new end-use. The complete separation of data and
page-rendering code and logic, as implemented in The Clarion Handy Tools 3rd generation server tools,
makes this possible.

Before we delve any further into the realm of possibility, let's take a look at the reality of the assignment
exercises from Lesson 3.

REVIEW LESSON 3 EXERCISES

EXERCISE 1:

Modify the form.membersemail script to disable the email send button depending on the state of
server variable reg.allowsendmail. In other words, do not allow mail to be sent via the web email
form if the member has marked his member record with "disallow" in the email send field.

The form.membersemail script referred to in question 1 is the form that comes up when a visitor to your
newsgroup clicks the "Email” button on another member's record in the members browse. This form is
intended to allow a member to send email to another member without revealing the intended recipient’s
email address. And of course, it would not be “enlightened” if we allowed sending without giving members
control over whether they actually want to receive such email or not. Member records contain a field that
permits them to “allow” or “disallow” such emails. The send button should be disabled when a member has
marked his personal record to disallow emails. That is the point of this first lesson 3 exercise — to modify
the form.membersemail script to disable the send button when emailing is disallowed by the member.

The following JavaScript code creates the buttons on the bottom of the send/edit form. The button we're
specifically interested in is the one drawn by a JavaScript function called jsbutton.drawsendbutton().

1. <script |anguage="javascript">)

2. j sbﬁtton. gragsenjdbut t on(gi g.readonly, 5); The full script can be found
3. j sbut t on. dr awsi gnat ur ebut t on(si g. r eadonl y, 6) ; in (FORM) 04. Members
4. j sbut t on. dr awhel pbut t on(f al se, 7); Email Form HTML

5. j sbut t on. dr ancancel but t on(f al se, 8);

6. </script>

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 2

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

I Send A Message To Another Member

Hame: Creces, Gus

Company: The Clarion Handy Tools Page
Website: http: S fwww, cwhandy . cafindex, html
Subject:

Type your email zubject here...

Email: Type your email message hers..,

/"f Thiz buttan should be ™
dizabled when the member to
whaom your email is targeted
haz hiz zet hiz member record

*: to "dizallow" email

F
Send |[Signature| Help Cloze

lllustration 4.1

The script called jsbutton.drawsendbutton(), illustrated below, contains the source code that draws the
send button. The backend variable that we're interested in reacting to is called reg.allowsendmail.

This is a flag in the member's registration file that he/she can set to "Allow" or "Disallow" in order to control
whether the NG server sends them mail or not. This is a reg (or registrant) variable referring to the person
whose record is being accessed.

All we need to do, to enable the send button when reg.allowsendmail is set to "Allow", is to test whether
the "Allow" condition is being met. (See example below)

1. jsbutton. drawsendbut t on(xdi sabl ed, xt abi ndex) {

2. btntext = ' + button. browsesendbuttontext.slice(0,1) +
"' +
but t on. br owsesendbut t ont ext . sl i ce(1, but t on. browsesendbut t ont ext. | ength) ;

3. if (xdisabled == 0 && reg. al | onsendnai | == "Al |l ow") {

4. var rtnvar = '<button type="submt" '+ -
" accesskey=but t on. br owsesendbut t ont ext . sl i ce(0, 1) ' + 'i| In server scripts, see
name="bt ngsend" tabi ndex=""' + xtabindex + '" cl ass="bl drf JavaScript Item:

e +'{onCl ick="return emailrecord()"> + btntext + '</buttor (JSBUTTON) Draw

5. }else :

6. var rtnvar = '<button type="submt" disabled ' + Sl LTS el
' accesskey=but t on. br onsesendbut t ont ext . slice(0,1)" + "i
nane="bt ngsend" tabi ndex=""' + xtabindex + '" class="bldr_button" ' +
‘ondick="return emailrecord()"> + btntext + '</button> ;

7.

8. docurent . wite(rtnvar) ;

9. }

The top branch of the if () statement, beginning on line 3, draws the enabled version of the button. The
bottom branch, beginning on line 5, draws the disabled version. The code portion that's been expanded is
if (xdisabled == 0), in order to check also for the state of reg.allowsendmail. The if statement now reads
as follows: if (xdisabled == 0 && reg.allowsendmail == "Allow").

The double ampersand is JavaScript's equivalent of Clarion's AND operator. Hence, we're going to allow
an enabled button (the top branch) when xdisabled is False AND reg.allowsendmail contains the word
"Allow". In the JavaScript language == is the comparison operator, and = is the assignment operator.

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 3

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

Here's what the reg object behind this mail-send form looks like. It contains one member's registration
information. It's a good example of a JavaScript data object being packaged by the server and sent to the
browser as the result of a request for form information.

Note that the information available about two components, Name and Company is considerably more than
the information available for say, Website or Timeslogged. That is the result of decisions made during
server development about what we would be doing with the information. Some of this comes up directly
from our original dictionary design. Note further, that this information is not burdened with HTML formatting
tags to describe how the data should be rendered. Rendering the form or web interface is a separate
operation — our script - and should not be confused or inter-woven with form data.

function obj reg() {

this.first = "Gus" ;
: E: : Ipfztse;t (:3r ecdefs Li’ ne" - A typical JavaScript Data Object, this
t hi S: dat el ogged = " 10/ 29/ 2,’. . member information is pure data
this.timel ogged = "11:36: 1" : packaged by the server, designed in
this. name = null - ' the data dictionary. It is not
this.initname = function() { encumbered by HTML tags or any
this.me =" kind of rendering information. The
t his.val ue = unescape("Creces, CGus") ; “client-side” scripts may use this
t hi s. hi dden = fal se ; information as required by the
this. di sabl ed = fal se ; intended end-use.
this. readonly = true ;
this. pronpt = unescape(" Nane: ") ;
this.init = function() {
this.me = docunent. forns[0] . reg_nane;
this.me.value = this.value ;
}
}
this.name = new this.initname()
t hi s. conpany = null ;
this.initconpany = function() {
this.nme = """
this.val ue = unescape("The Cl arion Handy Tool s Page") ;
t hi s. hi dden = fal se ;
t hi s. di sabl ed = fal se ;
this. readonly = true ;
this. pronpt = unescape(" Conpany:") ;
this.init = function() {
this.me = docunent. forns[0] .reg_conpany;

this.ne.val ue this.val ue ;

this.conmpany = new this.initconpany()

this.website = "http://ww. cwhandy. ca/i ndex. htm" ;
this.tinmeslogged = "3559" ;

this.all owsendmail = "Disallow' ;

this.emnil = "gcreces@ynpatico.ca" ;

var reg = new obj _reg();

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 4

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

The result of our code modification is now visible in this member's record and shows the "Send" button

disabled when the member's record is set to "disallow" sending of emails.

® Send A Message To Another Member

Hame: Creces, GUs
Company: The Clarion Handy Tools Page
Website: http: £ v, cwhandy . caSindex html

Subject: Type your email subject here. ..

Email: -
Type your email meszage here. .,

< Thiz button now shows
dizabled when the
member sets hig member

record to "dizallow

—

Signature

lllustration 4.2

EXERCISE 2:

Modify the head.image script to handle not only the drawing of the page header image but also to
handle some of the work now being handled by the title.common script, including drawing the title
bar under the logo and the user’s name at the top of the page (when known). At the same time, do
not obsolete the title.common script so that it does nothing, since much of the tool tips text is

handled also by title.common.

This is an easy one, since it's just a matter of combining the title.common script with the head.image

script. Here are the two scripts as they are supplied to you.

<!---(The head.image script)--->
<t abl e cl ass="bl dr _header" >
<tr>
<t d>
<scri pt | anguage="Javascri pt">
var headerinmage = '<ing src=""' + inmage. headeri mage +
i mage. headeri magewi dth + '" hei ght="" +
i mage. header i magehei ght +
' border="0" align="center">" ;
docunent . wi t e(headeri nage) ;
</script>
</td>
</tr>
</tabl e>

<!---(The contents of title.comon nmoved to the head.inage scri
<table class="bldr_title_container">
<tr class="bldr_title">
<t d>
<script> javascript:jstitle.drawtitlebartext(); </script>
</td>
</tr>
</tabl e>

In server scripts, see the
HTML Item called:
(HEAD) 01. Header
Image Url HTML

In server scripts, see the
HTML Item called:
(TITLE) 01. Common
Page Titles HTML

© 2004 - The Clarion Handy Tools Page

13.05.2004 - 5

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

If you copy them together just as you see them above into the head.image script container you're pretty
much done, with one exception. In an earlier version of these scripts, that left nothing in the title.common
script container. In that case, after completely removing the previous contents of the script container we
simply added an HTML comment, which doesn't display, but is still a legal script:

<!---(THIS DOES NOTHING)--->.

Just because the basic page layout logic programmed into the server is asks for variable title.common,
doesn't mean that variable has to actually contain anything visible.

In later versions of the title.common script we've added lots of other work for the script to perform and it’s
not necessary to pad the script with a comment to make it legal. Currently the script contains a section that
puts the signed-in user’'s name under the page logo. We're also using this as a convenient place to store
tool-tip information.

The important thing to learn from what we’ve done here in exercise two is that the scripts which render the
look and feel of your web pages are not determined by the server at all. They can be changed, tweaked,
improved, moved, on-the-fly after the server is up and running.

Admittedly, this does make the assumption that the server is sending you the correct file information for
your scripts to display. But the decision about what data is sent from the server is a data design
consideration, not an interface design consideration. Too often, web design mechanisms mix these two
aspects together, making dynamic web-page design far more difficult than it has to be.

EXERCISE 3:

Find the scripts that contain and execute the actions hooked to the messages browse
View/Edit button and the Thread button. Copy the script code to your answer and explain
briefly what the code is doing.

The friendly name of the script to find this in is: (PAGE) 11. Messages Browse Page HTML. Its code
name is page.messagesbrowse. The code that describes the buttons follows below:

/* INSERT IEWED T OR VI EWREPLY DEPENDI NG | F OMER RECCRD */

1. if (brwrsg[datarow .ownerrecord == true) {
2. but t onl abel = button. br owseedi t but t ont ext ;
3 viewedi trepl ybutton = '<td><button type="submt" id="btnviewedit" ' +
class="bldr_ebtn" ' + ' onclick="action=j ssubnit.takeedit(brwrsg[' + datarow +
"1)">" + buttonl abel + '</button> ’ ;
4. } else {
5. but t onl abel = button. br onser epl ybuttont ext ;
6. viewedi trepl ybutton = ' <td><button type="submt" id="btnvieweply" ' +
class="bldr_ebtn" ' + ' onclick="action=jssubmt.takeedit(brwrsg[' + datarow +
"1)">" + buttonlabel + '</button> ’' ;
7.}
8. threadbutton = '<button type="subnit" id="btnthread" class="bldr_ebtn" ' +
"oncl i ck="acti on=j st hread. t aket hr eadbut t on(brwnsg[' + datarow + '])">' +
but t on. browset hreadbuttontext + ' </button></td>" ;
In server scripts, see
9. /* SOME OCDE OM TTED HERE FOR CLAR TY */ HTML Item: (PAGE) 11.
. . . . Messages Browse
10. docurnent . wri te(vi ewedi trepl ybutton) ; Page HTML .

11. docurent . wri t e(t hreadbutton) ;

You already know that the browse view/edit button is only labeled "View/Edit" when the message is one
that you created. Members are only allowed to edit their own messages. Otherwise the button name used
is "View/Reply".

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 6

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

These values originate from two server variables called:
button.browsereplybuttontext and button.browseeditbuttontext.

The code above tests whether the property brwmsg[datarow].ownerrecord contains true or false. The
brwmsg[datarow] object lets us know, via the .ownerrecord property, whether a message browse record
belongs to the person logged in or to someone else. We'll take a further look at browse data objects later
in this lesson.

What we're after here is this bit of code:
onclick="action=jssubmit.takeedit(brwmsg[datarow])"

It's the JavaScript action that's triggered by the View/Edit or View/Reply button's onclick event. Notice that
the same script is called for owner message records as for non-owner message records.

The thread button doesn't change from one browse record to the next so it has no condition around its
description. When the thread button is clicked, it invokes a function called: jsthread.takethreadbutton().
Like the .takeedit() function above, it is being passed the entire data record for the row being examined,
that is, bremsg[datarow].

The button descriptions stored in local variables vieweditreplybutton and threadbutton, are written out
as HTML in the final two document.write() statements: document.write(vieweditreplybutton) and
document.write(threadbutton).

Whenever you see document.write() you can be certain that JavaScript code is creating HTML for the
browser to render.

The jssubmit.takedit() function looks like this: In server scripts, see

. . . . JavaScript Item:
: Szggﬂn'n:anz a:‘(g??r:st g)i(Obju)er{fi eld.value = xobj.fetchfilter ; QEELEIT) Eromse
' -auery ' o ’ Edit Button Script.

docunent . forns[0] . editaction.value = 1 ;
docunent.forns[0].action = "KQ¥$" ;
return docurent. forns[0].acti on;

}

Notice that the passed-in browse record is internally referenced as xobj (external object). The first function
line performs an assignment to the document form's queryfield value. This is one of those hidden, form
fields we discussed in the previous lesson which travels back and forth between client and server with
"state" information.

We're setting queryfield.value to the contents of a variable called: xobj.fetchfilter. Though we haven't
shown you yet what's in xobj.fetchfilter, you can guess it's a filter statement that isolates just the record
you want to see when the edit form pops up. In other words, the JavaScript object containing the record for
any browse data row contains a query statement provided by the server that can be used to fetch that
record for editing in a form. We'll show you a browse data array later in this lesson where you can examine
the data for a single browse record and the .fetchfilter associated with a browse record.

The hidden form field called .editaction is set to 1 and the page form's action is set to "KQY$". Look in the
Clarion equates file HNDEQUSK.CLW and you'll find that KQY$ is named REQUEST: TakeQuery and that
an action value of 1 is named ACTION:HttpEdit. In the final line, the form's action is returned from the
.takeedit() function such that an onclick of the View/Edit or View/Reply button performs the actions
assigned to it inside the .takeedit() function.

Anthropomorphically, this onclick action POSTs a message to the server as follows: "Here, take this query
and return the data associated with it to me for editing or viewing."

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 7

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

The server wraps the data object for the requested record and sends it back with a page formation that
calls for form.messageviewedit or form.messagesviewreply depending on whether you're recalling one
of your own messages (for possible edit) or someone else's message (for viewing or replying).

The server, in this case decides for itself, which of the two forms to write out based on it's own
determination of whether you're requesting one of your own messages or some else's.

The server page returned writes out this form for your own messages.
<script> javascri pt:docunent.wite(unescape(form nessagesvi enedit)); </script>
The server page returned writes out this form for other member messages.
<script> javascri pt: docurent.w it e(unescape(form nessagesvi eweply)); </script>
The server page returned writes out this form for a print/preview version of messages.

<script> javascript:docurent.wite(unescape(form nmessagesviewprint)); </script>

[V ‘web Update From Javascript File?
Javaszcript Yaniable For Owner Record:

| farm.messagesviewedit

Javazcrpt Yarniable For Mon-Owner Becord:
| farm.messagesviewreply

Javagcrpt Yarniable For Preview/Print Form:
| farm.messagesviewprint

lllustration 4.3

Note that the latest scripts do not use all three message states provided for in the server design. Messages

where the .ownerrecord property is true, are presented with form.messagesviewedit. That is, in an
editable, text-format as illustrated below.

+ Edit Or Insert A Message

Category: IREF‘LY vl Save Delete Clear Reset |Signature| Help Cancel

Subject:

IImage alongside browse grid? [5/08,2004-18:30:00)

Message:

Fatrick:

“rou can do whatever you want and whatever your skills with HTML and Javascript enable wou to da,

The Clarion app handles getting the data to the web page in a highly uzeable format [Javazcript Data Objects) that can then be
rendered into update forms, browsesz, treesz, pages -- whatever you want, There data returned and the rendering of the data are
entirely separate o that you don't hawve to mesz with the server back end programming to get a browse or a form to look different,

Lerver codrse participants, feel free to jump in here with vour experiences, —

,___,--"' Thiz iz a rendering of furm.messagesviewedit. =
(= i The .ownemrecord property iz true. The
\ mesgage is being created/chanaged by the
meszage onginator.

Gus Creces
The Clarion Handy Toolz Page
bttp: S, cwbandy, ca findes, btml

lllustration 4.4

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 8

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

Messages where the .ownerrecord property is false are presented with form.messagesviewprint. That
is, in non-editable, html-web-page format also illustrated below.

- ,The Clarion Handy Tools Page

R
3

| | Reply || Print || Help || Prewious || Mext || Cancel ||

Category: FREPLY
Subject: Image alongzide browse grid? [508 2004-18:30:00)
Hame: Le Duc, Didier

Patrick:es, | even uze the images az Hyperlinks to ather sites.

/"-’-.- . . - -ﬁ'\\
Thiz iz a rendering of
Didier Le Duc Ve b
Francened S&RL
http: £ fvaw, francened, com |
b
,

form.meszagesviewprint,
The .ownerrecord property
iz falze. The meszage iz
being viewed by zome ather
than the ariginatar.

Iz there a way to put an image on every line of the browse grid?

Patrick De Laet

lllustration 4.5

Which script name is used for a reply form and which for an edit form is determined in the server on the
BrowserServerHTMLBuilder template by the developer (see lllustration 4.3). The same script could be
requested in all situations. That's up to the developer and is decided at compile-time. However, what's in
the script and what it does is determined in the script itself and can readily be changed using the provided
script editor by the server manager at run-time.

The jsthread.takethreadbutton() function looks like this: In server scripts see:
(JSTHREAD) Take
1. jsthread.taket hreadbutton(xobj) { Thread Button Script.
2. var nextyear = new Date() ;
3. var cooki enane = docunent. forns[0].vi ew d. val ue. t oLower Case() +
"l ast query"; nextyear. set Ful | Year (nextyear.getFul |l Year() + 1) ;
4 docunent . cookie = "" ;
5 docurrent . cooki e = cooki ename + "=" + escape(docunent. forns[0]. queryfi el d.val ue)

+ "; expires=" + nextyear.toQGWIString() ;
6 docunent . forns[0] . queryfiel d. val ue = xobj.threadfilter ;
7. docurrent . forns[0] . edi tacti on.value = 0 ;
8. docunent . forns[0] . acti on = "KQ¥$" ;
9
1

. return docurent. forns[0].acti on;

0.}
This script isolates a single message thread, such that only an original message placed via the messages
"Insert” menu, and any replies placed via the "Reply” button on the messages form, are displayed in the

browse. This is possible because message records designated as "Replies" have the BOD:ID of the parent
message (the message to which they are replying) added by server logic to their BOD:ThreadID field.

The parent record has its BOD:ThreadID set to its own BOD:ID. To fetch any thread, then, we only need to
access any individual thread member and ask for all records with the same BOD:ThreadID value.

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 9

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

The first set of lines above have to do with storing the current query to a cookie record on the client
browser's hard disk. The query being stored describes the browse before the "Thread" button is clicked.
Why store this query? If you check out your messages browse you'll see it has a "Recall" button. That
button is used to undo or "Recall" the browse to its pre-thread state. Consequently, the user can move into
a thread with "Thread" and back out of a thread with "Recall". Each "Recall", does a fresh fetch from the
server in case any newly added records matching the original browse query need to be included in the
browse.

Code line 6 above assigns xobj.threadfilter to the page form's .queryfield.value. This is a filter statement,
provided by the server as part of the data object for every row, and it recalls all the members of any thread.
Sometimes, of course, there is only the parent record in a thread, if it has not yet been replied to. The next
line, assigns zero to the page form's .editaction.value. An editaction.value of zero can be found again in
HNDEQUSK.CLW to be described as ACTION:HttpBrowse, a browse.

The next line, assigns request "KQY$" to the page form's .action property. From our earlier discussion we
know this is REQUEST:TakeQuery. And finally, when the function returns the page form is POSTed back
to the server by the browser.

Anthropomorphically the onclick action of the "Thread" button POSTs a message to the server as follows:
"Here, take this query and return the data associated with it to me, packaged for browsing." The server
wraps the data objects for the requested records and sends them back with a page that calls for a script
called page.messagesbrowse to be written out.

[V “web Browse FromJavascript File?
Javascript Yarniable:
| page. meszagesbrawse

lllustration 4.6

Which script name is used for a messages browse is determined in the server on the template named
BrowserServerHTMLBuilder by the developer, at compile-time (see lllustration 4.6).

What's in the script and what it does is determined in the script itself and can readily be changed in the
provided script editor by the server manager at run-time.

ANATOMY OF A BROWSE DATA OBJECT (ARRAY)

It should be obvious by now, from what has been said in other lessons and in this one, that a browse data
object is really a data array with one array element for every record in the browse. JavaScript data arrays
look a lot like Clarion arrays. When we reference brwmsg[100], the array name is "brwmsg", while [100]
indicates the hundredth element in the array. Normally the array element pointer is a variable; hence we
tend to use expressions like briwmsg[datarow].

Below are two, real-world browse records from a "Thread" button request placed on the CHT support
server. Let's give these items the official name Browse Data Objects.

Notice that the object names are NEWed as brwmsg[1] and briwmsg[2]. The second record is the parent.
It has a .bodid of 11311 and a .bodngthreadid of 11311. That gives it away (as being the parent record).

The remaining record is a child of this one because only its .bodngthreadid is 11311. Note that these are
records formatted for a messages browse. They do not contain the entire message. Only the first few
hundred message characters are included followed by "More: (xxx)...". Since messages can be up to
50000 bytes in length it would be pointless and inefficient to send up the entire message string for each

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 10

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

browse record. At such time as when we need to see any individual message, we can use the .fetchfilter
property of that message record to obtain the entire record from the server.

Now look for two other things discussed earlier in this lesson. The field called .fetchfilter contains a valid
CHT query: BOD:ID = 11313. This is the query used by the browse "View/Edit" or "View/Reply" button to
bring this record back for edit or reply. To recall a browse record you don't need to know its back-end name
or its back-end ID. You only need to know that the necessary query to recall it is stored in its .fetchfilter

property.

That saves a lot of sweat and guesswork. The field called .threadfilter contains a valid CHT query:
BOD:NGThreadID = 11311 ORDER BY -DATE,-TIME. This is the query applied by the browse "Thread"
button. In fact, this is the very same query that spawned these two message records.

Finally, notice that the top record has an .ownerrecord value of 1 or True. That indicates the message
record was created by the same person who requested this record set.

function obj _brwisgl() { This is message 1 in a
this. bodngnenberid = "1596" ; browse message array. Its
EE! S. Bog,ugdi‘t ??:513} K .ownerrecord property is
thi s, bodngt hreadi d = *11311" : O @ (UG (e [l Uikl
t hi s. boddat el ogged = " 10/ 29/ 2003" ; th? PR BT Ison
this. bodti mel ogged = "10: 32: 47" ; this browser row seeing
t hi s. bodnsgsi ze = "958" : his/her own message.
t hi s. bodnane = "Oreces, Qus" ;

t hi s. bodcategory = "REPLY" ;
thi s. bodsubj ect = "RE (10/29/2003- 9:19:38) Wb App Participants” ;
this.fetchfilter = "BGD. ID = 11313" ;
this.threadfilter =" r NGThr eadl D = 11311 CRDER BY - DATE, - TI ME' ;
this.ownerrecord = "1" ;
thi s. bodmessage = "All you need is a DSL, ADSL or CABLE " +
"(always on) web connection. " +
"W provide a test server and all the necessary software. " +
"The course deal s wbr>Mre: (958)..." ;

}
brwrsg[1] = new obj _brwisgl();

function obj brwrsg2() { This is message 2 in a browse

t hi s. bodngnenberid = "34" ; message array. Its

t hi s. bodupdated = "1" ; .ownerrecord property is zero or
this.bodid = "11311" ; false indicating that the person
this. bodngt hreadid = "11311" ; browsing did not create this

t hi s. boddat el ogged = "10/ 29/ 2003" ; message.

t hi s. bodti nel ogged = "9:19: 38" ;

t hi s. bodmsgsi ze = "274" ;

t hi s. bodnane = "Kar amar ko, Darko" ;

t hi s. bodcat egory = "QUESTI ON' ;

t hi s. bodsubj ect = "Wb App Partici pants” ;
this.fetchfilter = "BGD. I D = 11311" ;

this.threadfilter =" r NGThr eadl D = 11311 CRDER BY - DATE, - TI ME' ;
this.ownerrecord = "0" ;
thi s. bodmessage = "1 assurmed that participants nmust " +

"have their own web server "+

"(dsl and other options)," +

"CHT Server Script Concepts - Lesson 4 " +
"so they could do testing through course. "+
"So | put nyself to secon
More: (274)..." ;

}
brwrsg[2] = new obj _brwisg2();

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 11

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

HOW A BROWSE SCRIPT WORKS

Having examined a browse data array containing Browse Data Objects, let's take a look at that portion of
the messages browse script that writes this information out to HTML in order to render the browse inside
your browser.

The friendly name of the supplied messages browse script is:
(PAGE) 11. Messages Browse Page HTML.

The JavaScript code name for this script is page.messagesbrowse.

By right-clicking any messages browse page you can see that server logic is requesting that a script called
page.messagesbrowse be written out inside the form element of the messages browse page.

R BEA N Messages Browse Witten From Javascript file. ----------- >
<script |anguage="j avascript">
docunent . w i t e(unescape(page. messageshrowse)) ;
</ scri pt>
N END: Messages Browse Witten From Javascript file. ----------- >

<brs> <!-- added by HWDHTm].OpenTablerFormd) --= PR

-
<fForm action ="KgQv$%" method="posT" name:“ngmessagesvieweditfgpf
<input tType="HIDDEN" id="sessionid" name="sessionid" readon” Thefom messagesbiowse \9—4222561'3
<input Type="HIDDEM" Jd="wiewid" name="wiewid" readonly " scriptis witten inside an A
<input type="HIDDEN" id="editaction" name="editaction" re/ HTHL farm stucture. Wwhich
<input tType="HIDDEN" dd="gueryfield" name="gueryfield" re provides a means of

value="DATE RANSE TODAY()-7,TODAYV() ORDER BY -O communicating back to the
<input type="HIDDEN" fd="guerypage" name="qguerypage" read server via the POST

3 command any reguests o

view or edit records made
rr the Rrosse

R BEGIM: Messages Browse written From Javascriph
<script language="javascript"s=
document.writefunescapel(page.messageshrowsel]) ;
</script>

</forms

lllustration 4.7

In the script example on the next page is the for loop portion of the default messages browse script
provided with the HNDMTSNG.EXE practice server.

A loop is started which increments a variable called datarow from the value in ndx.msgstart to the value
in ndx.msgcount. These two ndx (index) variables are provided with every browse data package to tell
you how many rows there are in the browse. Variable ndx.msgstart normally contains "1" and
ndx.msgcount normally contains the number of array elements in the browse.

The section commented as: /* ALTERNATES BROWSE ROW COLORS EVERY SECOND RECORD * is
responsible for alternating the style sheet applied to every other row. This is calculated, using the
remainder operator (%) which is the same in JavaScript as it is in Clarion.

Each time the row number, divided by 2, returns a zero (no remainder) the style sheet bldr_greenbar is
applied to the row. Otherwise the style sheet bldr_row_container is applied to the row. Table row <tr>
information is the first thing written out.

After that the .boddatelogged, .bodtimelogged, .bodmsgsize, .bodname, .bodcategory, .bodsubject
and .bodmessage fields are written out, each inside a <td> or table data tag with its own style sheet to
describe how that data element should be formatted. Finally, in the last line, the </tr> or table row close tag
completes the row.

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 12

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

1. for (var datarow = ndx.nsgstart; datarow <= ndx.nsgcount; datarow++) {
2. /* ALTERNATES BROASE RON COLORS EVERY SECOND RECORD */
3. if (datarow %2 ==
a. docurent. write(' <tr class="bldr_greenbar">") ; The complete script of
4, } else{ which this code is a
a. docunment.wite(' <tr class="bl dr_row container">") ; component is in server
5} scripts under HTML
6. /* INSERT VIEWEDI T OR VI EWREPLY DEPENDI NG | F OMER RECCRD */ | 'téMs. Its name is
X . . (PAGE) 11. Messages
A section of code omitted here has already been discussed above. B P HTML
7. docunent.wite(' <td class="bldr_browse nessages date"> + igtE FElye :
unescape(brwrsg[dat ar ow] . boddat el ogged) + '</td>");
8. docunment.wite(' <td class="bl dr _browse_nessages_date">" +

unescape(brwrsg[dat arow] . bodt i nel ogged) + '</td>");

9. docunment.wite(' <td class="bl dr _browse_nessages_si ze">' +
unescape(br wrsg[dat ar ow] . bodnsgsi ze) + '</td>");

10. docunent.wite('<td class="bl dr_browse_nessages_name">' +
unescape(brwrsg[dat arow] . bodnane) + '</td>");

11. docunent.wite('<td class="bl dr_browse_nessages_cat egory">' +
unescape(br wrsg[dat ar ow] . bodcat egory) + '</td>");

12. docunent.wite(' <td class="bl dr_browse_nessages_subject">" +
unescape(br wrsg[dat ar ow] . bodsubj ect) + '</td>");

13. docunent.wite('<td class="bl dr_browse_nessages_nsg">" +
unescape(br wrsg[dat ar ow] . bodnessage) + '</td>');

A section of code omitted here has already been discussed above.
14. docunent.wite(' </tr>") ;
15. }

That's really all that's involved in writing the data portion of the browse. To reformat some of these browse
elements, you shouldn't need to touch the browse code at all. Just make a note of the style sheet used by
that row item and modify the style sheet characteristics. Below is a code listing for the style sheet called:
bldr_browse_messages_date.

It's used on the first two fields, .boddatelogged and .bodtimelogged since they're very similar in size and
alignment. The technique of separation of data from the code that displays it and separation of formatting
from the code that applies it is very liberating once you understand it. During server building, when you
choose the option to display your web data from a JavaScript file the only thing you need to decide at the
server level is:

e the JavaScript variable name for the browse building script
the back-end data variables to be included in the browse

You do not need to decide style sheet names at the server level when the page is being rendered from run-
time scripts. That's more flexibly decided at the script-building level.

. bl dr _browse_nessages_dat e {

font-fani ly: t ahony;

font-si ze: _ 8pt ; _ In server scripts, under
;gm :{ ;leg.ch. 28; x: : Style Sheet Items, see
font-variant: nor mal (Browse) Messages
font - wei ght : nor nal ; Date Script.

wi dt h: 5%

text-align: right;

bor der - bot t om st yl e: none;

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 13

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

To temporarily remove a row element such as the message body from any row, all that's required is to
place a JavaScript comment around the document.write() statement for that element. For example:

/* document.wite('<td class="bl dr _browse_nessages_nsg">' +
unescape(brwrsg[dat ar ow] . bodnessage) + ' </td>"); */

To comment a line of JavaScript code, first highlight the code to be commented, then click the JavaScript
Comment button in the script editor or pull down the Format menu and select the Comment JS item as in
the screen snapshot below.

B Javascript Tags Chrl+T

ik, J It-ll

lllustration 4.7

HOW THE SERVER CREATES A BROWSE DATA ARRAY

Earlier we showed you that the BrowserServerHTMLBuilder template, on the view processing procedure
for the messages browse, was configured to produce a web browse via JavaScript file. We told the
template about this as follows:

[V “web Browse FromJavascript File?
Javazcript VWariable:

| page.messagesbmwse
»
»

Config HTML Builder

-
m——

lllustration 4.8

We set the check box "Web Browse From JavaScript File?" to true, and then told the template which fields
we wanted to display as follows:

Select data fields and display pictures:
[l [BOD:Updated - @M_3] [Erowse=bogus] (E dit=bogusz] ﬂ
[1 (BOD:ID - (28] [Browse=bogus) [E dit=bogusz]
1 [BOD:MGThreadlDr - @M_10] [Browse=bogus] [E dit=bogus]
[IConfigD ateButtonText] [BOD:DateLogged - @D 2B] [Browse=bldr_bra
[IConfigTimeButtonText] [BOD:Timelogged - AT 4B] [Browse=hidr_bro

[[IConfigSizeButtonT ext] [BOD:MagSize - @M 10b] [Browse=bldr_browse
ik »| [ICanfigH ameButtonT ext] [REG:Mame - @s50] [Brnwse=|:uldr=l:umwse=rr

Canfig D ata Fields

A

lllustration 4.9

We'll go into more detail on how the fields are configured on the template interface (and from the
dictionary) in a later lesson. For the present, suffice to say that by selecting and configuring fields in this
manner on the template, we cause the template to write code that calls a method in the CHT Browser
Server class HNDSubscriptionServer (see HNDSUBSV.INC/.CLW) called .AddJavascriptExportField().

A call is made to this method for each field selected, in order to incorporate that field into the browse data
object array. Below is some template generated example server code from the HNDMTSNG.EXE student
server that we gave you.

xServer . AddJavascri pt Export Fi el d (' BOD NGQvenber | D, BCD. NGvenber I D, |
'@\ 8', SIZE(BOD NGwvenberI D), H dden, Read_(nly, Disabled, Pronpt, 1, '', ,)

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 14

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

xServer . AddJavascri pt Export Fi el d (' BOD Updat ed' , BOD Updat ed, |
'@\ 3', SIZE(BOD Updated), H dden, Read_Only, D sabled, Pronpt, 1, '', ,)

xServer . AddJavascript ExportField ('BODID, BODID, '@_8, SIZE(BCD. 1D, |
H dden, Read_Only, D sabled, Pronpt, 1, '', ,)

xServer . AddJavascri pt Export Fi el d (' BOD. NGThr eadl D, BCD. NGThreadl D, |
'@\ 10', Sl ZE(BCD NGThreadl D), H dden, Read Only, D sabled, Pronpt, 1, '', ,)

The exported fields above are named .bodngmemberid, .bodupdated, .bodid, .bodngthreadid. It's been
said this several times in earlier lessons but it bears repeating. JavaScript code is case sensitive.

We've introduced the convention of setting all generated variables to lower case so that there is no
guesswork when using them in your scripts. JavaScript also cannot tolerate colons (:) in variable names.
Hence BOD:Updated becomes .bodupdated.

The generated Clarion code above, from the HNDMSTNG.EXE server, produces the following JavaScript
code packaged as a Javascript Data Object.

function obj _brwrsgl() {
t hi s. bodngnenberid = "1596" ;
thi s. bodupdated = "1" ;
this.bodid = "11313" ;
t hi s. bodngt hreadi d = "11311" ;
/[* SOME FI ELDS REMOVED IN TH S EXAMPLE FCR CLARI TY */

}
brwrsg[1] = new obj _brwisgl();

ANATOMY OF AN UPDATE FORM DATA OBJECT

From the browse we're able to insert, edit or reply to a message. We've explained already that a browse
button calling the jssubmit.takeedit() function sends a one-record-query (.fetchfilter) to the server with
the .editaction flag set to ACTION:HttpEdit.

Server logic decides whether to apply form.messagesviewedit or form.messagesviewreply based on
whether we've asked to insert a message and/or edit one of our own messages or we've asked to see
another person's message and may want to reply to it. Regardless whether we're kicked into edit mode
or view mode, the message record returned to us is the same. Only the name of the required script is
different. Below is a message record returned from an edit request. We'll call this formally an Update
Form Data Object.

An Update Form Data Object differs from a Browse Data Object (array item) in four significant ways:

1) It contains the entire message text.

2) It contains dictionary supplied validation information. For example - the possible choices
applicable to a message category field.

3) It contains the dictionary-supplied prompt for that field (You're not obliged to use it in your
scripts.)

4) It contains hidden, disabled and read only properties determined by logic that you've built into
your server.

The master object name for this update form message record is bod. That comes from our dictionary
prefix, BOD.

All editable fields, .category, .subject and .message are packaged as separate objects inside the bod
object. They must be addressed with the prefix bod followed by a dot followed by the field name followed
by another dot followed by a property or method name.

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 15

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

For example: bod.category.choices. For clarity, in the JavaScript code | write personally, | tend to
distinguish between properties, like bod.category.value and functions like bod.category.validate() by
adding a set of parenthesis.

You don't need to do this but every little bit helps when it comes to understanding your code a few weeks
or months after you've written it.

Here are the category field object's components:

bod.category.value - what the field contains; it has a legal synonym called bod.category.me
bod.category.choices - valid values for this field supplied by the dictionary
bod.category.hidden - is this field hidden i.e. not displayed on the form at all
bod.category.disabled - is this field to be displayed disabled

bod.category.readonly - is this field to be displayed but not-editable

bod.category.prompt - the dictionary supplied prompt

bod.category.validate() - this is a function called automatically on the field's onchange event

Notice that the validate() function calls a server-supplied generic function called inlist(), described
below, to ensure that the value inserted into bod.category.value is one of the legal values supplied in
bod.category.choices.

Here are subject field object's components:

bod.subject.value - what the field contains; it has a legal synonym called bod.subject.me
bod.subject.hidden - is this field hidden i.e. not displayed on the form at all
bod.subject.disabled - is this field to be displayed disabled

bod.subject.readonly - is this field to be displayed but not-editable

bod.subject.prompt - the dictionary supplied prompt

bod.subject.validate() - this is a function called automatically on the field's onchange event

Notice that the subject field does not include a choices property. It will accept almost any value except
blank. This field's validate() function calls a generic server-supplied validation function called notblank(),
also described below.

Here are the message field object's components:

bod.message.value - what the field contains; it has a legal synonym called bod.message.me
bod.message.hidden - is this field hidden i.e. not displayed on the form at all
bod.message.disabled - is this field to be displayed disabled

bod.message.readonly - is this field to be displayed but not-editable

bod.message.prompt - the dictionary supplied prompt

bod.message.validate() - this is a function called automatically on the field's onchange event to make
sure it only contains valid data

Notice that the message field also does not include a choices property. It will accept almost any value
except blank. This field's validate() function calls a generic server-supplied validation function called
notblank(), also described below.

function obj _bod() {
this.ngnenberid = "1596" ;
this.updated = "1" ;
this.id = "11313" ;

this.ngthreadid = "11311" ;

t hi s. dat el ogged = " 10/ 29/ 2" ;
this.tinelogged = "10: 32: 4" ;
this. msgsi ze = "958" ;

thi s. cat egory = null ;

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 16

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

this.initcategory = functlon() {
this. me =
t hi s.val ue
t hi s. choi ces

unescape(REPLY") ;
unescape(" QUESTI O\, REPLY, CHAT, SUGEESTI QN, NEWS, REPCRT, CONTACT, ")

t hi s. hi dden = fal se ;
t hi s. di sabl ed = fal se ;
this. readonly = fal se ;
t hi s. pronpt = unescape("Category:") ;
this.validate = function() { return inlist(this.nme, this.choices); } ;
this.init = function() {
this.ne = docunent . f or ns[0] . bod_cat egory;
thi s. me. onchange = function() { return true; } ;
this.ne.value = this.value ;
set choi ces(this.me, this.value, this.choices) ;
| }
this.category = new this.initcategory()
t hi s. subj ect = nul |
this.initsubject = functlon() {
this. me =
t hi s.val ue = unescape(RE (10/29/2003- 9:19:38) V&b App Participants") ;
t hi s. hi dden = fal se ;
t hi s. di sabl ed = fal se ;
this. readonly = fal se ;
t hi s. pronpt = unescape("Subject:") ;
this.validate = function() { return not bl ank(this.me); } ;
this.init = function() {
this.ne = docunent . for ns[0] . bod_subj ect ;
e

t hi s. me. onchang
t hi s. ne. val ue

}

this.subject = new this.initsubject()

= function() { return true; } ;
t hi s. val ue ;

t hi s. message null ;
this.initmessage = function() {
this.nme ="":
t hi s.val ue = unescape(" Dar ko: YODYBOA" +
"All you need is a DSL, ADSL or CABLE (al ways on) web connection. YODOA" +
"¢ provide a test server and all the necessary software. YODOA" +
"The course deals with building web servers using the CHT tool Kkit.%D®A" +
"OODWWA" +
"Qus O ecesWDWA" +
"The darion Handy Tool s Page?®D¥®A" +
"http://ww cwhandy. ca/ i ndex. ht m DDA’ +
"OODWA" +
/* A PORTION CF TH S MESSAGE HAS BEEN REMOVED FOR BREMI TY * /
"<SN P>0BDWA" + ") ;

t hi s. hi dden = fal se ;
t hi s. di sabl ed = fal se ;
this. readonly = fal se ;
t hi s. pronpt = unescape(" Message: "
this.validate = function() { return not bl ank(this.me); } ;
this.init = function() {

this.ne = docunent . f or ns[0] . bod_nessage;

e

t hi s. me. onchang
t hi s. ne. val ue

= function() { return true; } ;
t hi s. val ue ;

}

thi s. message = new this.initnessage()

var bod = new obj _bod();

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 17

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

The fields not designated "editable" are not packaged as separate objects inside the bod object. They're
simply properties that can be read but not changed and written back to the data base. This was decided on
the BrowserServerHTMLBuilder template at data design time.

You've told the server via your dictionary and the CHT templates how you want the information from a
given file record to be packaged. This is no different than the desktop applications you build. When you
build a browse or a form for a desktop app you display certain fields on the browse/form and not others. It's
a design decision.

The same kinds of design decisions that you make on a desktop application need to be made when you
build a dedicated data server like the HNDMTSNG.EXE test server we've given you. With CHT web
applications you have the extra flexibility of having the user interface entirely separated from the data so
that you can totally re-work the look and feel of the app without having to re-visit the Clarion code that
manages the back end data (unless you want to).

Please take notice, that there is a significant difference between data packages intended to be used in a
browse (Browse Data Objects) and the data packages intended for an update form (Update Form Data
Objects). The latter are considerably more intelligent and when based on a well-designed data dictionary,
they come with all the necessary validation logic built-in, so that in your page scripts, you do not need to
overly concern yourself about data validation. Every data object takes care of its own data validation needs
following your dictionary data design.

SOME SERVER-SUPPLIED GENERIC VALIDATION FUNCTIONS

The server includes with every Update Form Data Package a number of dedicated functions that handle
things like validation, and web form initialization. Because we discussed a few of these earlier, we'll present
some of them here and explain them briefly.

The ones presented here correspond to the data Validity Checks settings assigned in a Clarion data
dictionary (see illustrations 4.10). The next lesson, dealing with forms, will cover these and other server
supplied functions in greater detail.

The inrange() function checks for the correct data range in form data. It works with both alpha and numeric
data.

function inrange(xfld, xlow xhigh){
if ((xval.value >= xlow && (xfld.value <= xhigh)) {
return true ;
} else {
alert(xfld.id +" nust be in the range of:\n" + xlow + " and " + xhi gh) ;
return fal se;

}
}

The inlist() function ensures that a given field's value can be found in a list of possible choices for that
field.

function inlist(xfld, xvaluelist){
var thislist = xvaluelist ;

if (thislist.indext(xfld.value) '=-1) {
return true ;
} else {
alert(xfld.id +" nust contain one of the follow ng values:\n" + thislist) ;

return false;
}
}

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 18

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

The isboolean() function ensures that a given field’s value is either true or false.

function isbool ean(xfld, xlow xhigh){
if ((xfld.value == 0) || (xfld.value == 1)) {
return true ;
} else {
alert(xfld.id +" nust contain either 0 or 1. \n") ;
return false;
}
}

The isblank() function checks to see whether a field has been left blank.

function isblank(xfld){

for (var i =0; i < xfld.value.length; i++) {
var ¢ = xfld.value.charAt (i) ;
if ((c!="") & (c!="\n") & (c !'="\t")) return false;

return true;

}

Validation calls to these functions are made automatically with the onchange event of editable fields.
JavaScript's onchange event is roughly equivalent to Clarion's accepted event.

Whether such a validation call is made can be decided in the data dictionary on the Validation Tab or on
the BrowserServerHTMLBuilder template. A field like message category could be set up as in the screen
snapshot below. With the choices hard-coded direct from the dictionary.

¥ Edit Culun1n..:|:_:_?.'.(§perties - Category

General | Attributes | Comments | Options | Help Walidity Checks |"1'\J'inu:||:|w | Beport |

" Mo Checks

Cannot be Zero or Blank,

3

" Must be in Mumeric Bange
r | = | =
" Must be True or Falze
| |
~
—
&+ Muszt be in List
Choices: [QUESTIONIREPLYINEWSICHATISUGGESTIONIREPORTI
"Walues: |

(]9 | Cancel Help

lllustration 4.10

For the HNDMTSNG.EXE server, however, we preferred to give the server manager control over the field
choices and have incorporated a server variable (system.messagecategorychoices) that allows field
choices to be changed at run-time. These are stored in a data base and transferred to the category field's
update form data object validation function by the BrowserServerHTMLBuilder template.

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 19

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

LESSON 4 SUMMATION
In this lesson, we've reviewed in detail the answers to investigations we asked you to make in lesson 3.

These involved:

1) Modifying one of the existing scripts to take advantage of a data property supplied with every registrant
record to disable a form button

2) Combining two scripts into one and disengaging the script no longer in use

3) Examining the scripts responsible for calling browse update forms and browse threads

Finally, we covered in detail, Browse Data Object packages and how JavaScript data arrays coming from
the server are used by browse rendering scripts to draw the data grids we call browses. We further
examined some of the template settings required to make a CHT Browser Data Server generate the
Clarion code that creates these Browse Data Objects. Also covered, were Update Form Data Objects with
an eye to noticing the considerable difference between data objects targeted for update forms and those
targeted for web browses. We examined the auto-validation nature of Update Form Data Objects and how
validation settings were communicated upward from the dictionary and templates to the web pages via
server logic provided by the CHT Browser Server Templates.

UPCOMING...

Next lesson we'll show you the inner workings of web update forms and how they work.

LESSON 4 EXCERCISES

1) The sig.readonly property is used in approximately 5 server scripts.

a) Name them and explain how you found this out and how long it took you.
b) Explain how this property is set to true or false.

c) Explain how this property is used in two of the five scripts (be specific)

2) In the Mail section of server scripts, create an HTML promotional email to tell the other web app
participants in your group (remember to include me) about your server and how to reach it. Use the
Members --> Mail menu sequence to broadcast your email to this target audience.

3) In lesson 3 we had you move the contents of the title.common script to the head.image image
script. Add some code of your own to the title.common script to put this script container to some
alternate use. Make the code conditional so it only displays on the home page. We already have
some code there that you can alter or add to.

4) Research the use of the HTML <FORM> tag. Explain what it's used for and how it works on a web
page. Use the knowledge gained in your research to explain what's happening in this form code:

<formaction ="http://65.95.83. 248: 443/ KQ¥$" net hod="PCST" name="quer yfornm >
<i nput type="H DDEN' i d="sessi oni d" nanme="sessioni d' readOnly val ue="1913-74085- 7027550" >
<input type="H DDEN' id="view d" nane="vi ewi d" readOnly val ue=" NQVESSAGESVI EW >
<input type="H DDEN' id="editaction" nanme="editacti on" readCnly val ue="0">
<i nput type="H DDEN' id="lastquery" name="|astquery" readly
val ue="DATE RANGE TH SWEEK CRDER BY - DATE, - Tl ME' >
<input type="H DDEN' id="currentquery" name="currentquery" readCnly val ue="">
<i nput type="H DDEN' id="def aul t query" name="defaul t query" readly
val ue="DATE RANGE NON CRDER BY - DATE, - TI ME' >
S BEA N Qery Control witten fromJavascript file. ----------- >
<script |anguage="j avascript">
docunent . wri t e(unescape(f or m messagesquery));
</ script>
S END: Query Control witten fromJavascript file. ----------- >
</fornp

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 20

CHT SERVER BUILDER’S COURSE Server Script Concepts Lesson 4

Talk to you next lesson.

Cheers...
Gus M. Creces
The Clarion Handy Tools Page

© 2004 - The Clarion Handy Tools Page 13.05.2004 - 21

